

DEVELOPING HEAT TOLERANCE AND N EFFICIENT RICE HYBRIDS FOR CHANGING CLIMATE

SR Voleti

DIRECTORATE OF RICE RESEARCH

6th International Hybrid Rice Symposium 10-12th 2012

NUE : Soil properties monitored season wise

Initial Soil Properties of the experimental field (Mean of 10 samples)

S.No	Soil property	N low Plot	N Rec Plot
1.	pH	6.62	6.29
2.	E.C (d S/m)	0.22	0.24
3.	Organic Carbon (%)	0.58	0.69
4.	Available N (kg/ha)	143	122
5.	Available P ₂ O ₅ (kg/ha)	109	126
6.	Available K ₂ O(kg/ha)	628	682

Soil pH and EC are normal; organic carbon content is medium; available N is low; P_2O_5 and K_2O are high.

Morphological features Mostly resembled Maintainer parent in Hybrids except plant height (% change due to N application)

Character	Restorer	CMS	Maintainer	Hybrids
Pl.Ht	23	24	24	12
Tiller No	18	21	54	56
EBT	36		56	56
Straw	33	33	45	41
TDM	42.6	33.9	45.2	41

* Indicates N application had significant influence

Leat Temp at Veg and Rep stages, Leaf rolling behaviour at Veg and LA at rep stage are superior in hybrids

Character	Restorer	CMS	Maintainer	Hybrid
LT(veg)	-12	-11	-15	-22*
LT (Rep)	0.35	-9.2	-12	-13*
LR (Veg)	32	-16	2.2	-28*
LR(Rep)	81	0.1	13	38*
LA (Veg)	12	26	28	3*
LA (Rep)	16	12	27	27*

LA at veg stage inferior in hybrids at veg stage indicates relative slow growth responses

* Indicates N application had significant influence

Yield components in parents and hybrids

Character	RES	CMS	Maintainer	Hybrid
Pan.Wt	51	35	59	43
Pan No	29	27	46	20
FGW	50		62	39*
GY	48	-	62	40*
Chaff	42	-	76	73

FGW and GY are relatively lower than their respective parents in hybrids It is possible to bring the yield response similar to levels of RES and Maintainers

* Indicates N application had significant influence

Leaf thickness

NUE Variation is very high for various physiological characteristics:

0.000

Phenotyping of Chlorophyll/greenness (SPAD)(Restorers)

	nzyme activit	<mark>y of G</mark> lւ	itamine sy	ynthatase (Hybrid Ric	e verities H	1 1-H
		N-0	N-100		N-0	N-100	
and all	H 1	0.087	0.006	H 26	0.000	0.000	Carlos and a
	H 2	0.032	0.004	H 27	0.000	0.000	
	H 3	0.000	0.000	H 28	0.033	0.004	
	H 4	0.000	0.000	H 29	0.036	0.007	
	H 5	0.028	0.009	H 30	0.035	0.007	
	H 6	0.000	0.000	H 31	0.135	0.019	
	H 7	0.037	0.014	H 32	0.058	0.006	
21.	H 8	0.009	0.011	H 33	0.060	0.025	an an i
	H 9	0.017	0.008	H 34	0.219	0.022	
	H 10	0.028	0.024	H 35	0.335	0.004	
	H 11	0.000	0.000	H 36	0.650	0.008	
	H 12	0.040	0.016	H 37	0.085	0.003	
	H 13	0.040	0.013	H 38	0.070	0.004	
	H 14	0.043	0.018	H 39	0.026	0.003	
	H 15	0.014	0.009	H 40	0.028	0.005	24. J
	H 16	0.014	0.014	H 41	0.034	0.010	1
	H 17	0.047	0.008	H 42	0.358	0.031	
12	H 18	0.051	0.012	H 43	0.069	0.005	(1)
	H 19	0.000	0.000	H 44	0.121	0.004	
	H 20	0.039	0.007	H 45	0.048	0.007	
	H 21	0.000	0.000	H 46	0.038	0.004	
24. 24.	H 22	0.029	0.024	H 47	0.037	0.025	2 R. F.
	H 23	0.143	0.019	H 48	0.090	0.011	
	H 24	0.495	0.014	H 49	0.103	0.008	
(n	H 25	0.238	0.011	H 50	0.155	0.007	12

Phenotyping of Temperature (Hybrid rice verities H 1-H 50)

2003년 2014년 - 1915년 - 1915년 2015년 2014년 - 1915년 - 1916년 2016년 2016년 - 1916년 - 1916년 - 1917년 - 1918년 - 1917년 - 19				最新 计计算机 二字	and the second second	
		N-0	N-100		N-0	N-100
	H 1	31.50	29.6	H 26	0.00	0.00
	H 2	31.25	29.55	H 27	0.00	0.00
	H 3	0.00	0.00	H 28	29.45	30.85
	H 4	0.00	0.00	H 29	29.50	30.30
	H 5	31.30	29.25	H 30	29.30	29.85
	H 6	0.00	0.00	H 31	29.45	30.85
	Η7	30.10	28.80	H 32	29.45	30.90
	H 8	30.25	29.00	H 33	28.90	30.15
	H 9	29.60	29.60	H 34	29.35	30.85
	H 10	29.90	28.35	H 35	28.80	30.25
HOLD C = USS	H 11	0.00	0.00	H 36	29.25	30.05
	H 12	29.95	28.85	H 37	29.20	30.70
	H 13	29.65	28.55	H 38	29.25	30.55
0.85 × RM	H 14	29.95	28.65	H 39	39.20	30.60
	H 15	29.65	28.90	H 40	28.75	31.70
	H 16	30.00	29.35	H 41	29.00	31.65
	H 17	31.00	30.55	H 42	29.00	30.90
MODE	H 18	30.80	29.45	H 43	29.30	31.50
	H 19	0.00	0.00	H 44	29.00	32.45
	H 20	30.60	29.45	H 45	29.20	30.95
	H 21	30.10	28.30	H 46	29.30	30.70
	H 22	29.85	29.45	H 47	29.25	30.95
an der steller. Here soner han der steller in der Bereichen das der steller in der Bereichen der	H 23	29.80	29.85	H 48	29.20	31.05
	H 24	26.75	29.05	H 49	29.25	30.50
	H 25	29.70	29.40	H 50	28.90	30.45

Temp differences between the chambers and LT of genotypes indicated adaptation. DRRH and its female parent have relatively adjusted better by reducing leaf temperature under elevated condition than of male parent and KH.

Avoidance by> Transpiration efficiency and LT

S.No	Category of the Variety	Adaxial side	Abaxial side	es beiong	IRHTN 2009-2010 (IR-19746-28-2-2)	
1	Aromatic scented germplasm (Basmati 370)			7	DRR & Others released varieties (Akshayadhan)	
2	Germplasm lines (IC-463622)			8	Restorers (BCW-56)	
3	Upland rice varieties (IR-83750-B- B103-4)			9	A-lines (APMS 6A)	
4	Arobic rice varieties (IR 82310-B-B-67- 2)	No.		10	B-lines (APMS-6A)	
5	Heat tolerant lines from PAU (NCR-599)			11	Hybrids (PA6129)	

PA-6129

Adaxial leaf surface showing trichomes Conserve heat flux during dry weather

NUE : After harvest of 1st season

Soil parameters measured during kharif 2011

S.No	Parameter	N Low Plot	N Rec Plot
	KCI-N(mg N/kg soil)	Mean of 10 sam	nples
1.	15 DAT (days after transplanting)	2.92	4.17
2.	30 DAT	3.42	5.28
3.	50 DAT	4.00	5.79
4.	At maturity	4.30	5.20
Urea	se enzyme activity (µg NH	₄N/g soil/2h) Mea	n of 10 samples
5.	Soil Urease activity at har	vest 35.7	46.2

- The available N (KCI-N) during crop growth was higher by 21-54% at different stages in N Rec plot compared to N low plot
- Soil urease enzyme activity was 29% higher in N Rec plot over N low plot at harvest

Stigma receptivity and Pollen fertility under normal and heat tunnel-DRR

4.640

Pollen mother cells if exposed to HT, has an effect on grain filling. After the pollen Shedding, relative management of Pollen viability is possible under hypo/hyper tonic Solutions as it happens on reaching a receptive stigma and or application of B.

Stigma receptivity due to exposure to HT causes irreversible grain yield loss Thus, under climate change, efforts to mechanisms on megagametogenesis needed.

Megagametogenesis is more sensitive than microgametogenesis to temp Relatively superior Indian rice genotypes some physiological- characters & Lower Thermal Injury: PSD-1, KRH-2, DRRH-44,

- Fast Leaf Rolling: DRRH-2, JKRH-2000, DRRH-44, CRHR-9.
- Stomatal Conductance : hybrids,
- * High Grain Yield: PSD-3, CRHR-5 and JKRH 2000 .

Conclusions:

1) Leaf rolling and leaf temperature were superior in Hybrids.

2) Hybrids physiologically responded well to N application.

3) In yet another independent study with out N but under elevated Carbon dioxide conditions through an independent study superior maintenance of leaf stomatal characters confirms the relative tolerance of hybrids.

4) TDM and grain yields are moderate in hybrids compared to the maintainer and restorer lines indicates that further increase in grain yield is possible by improving the parental selection.

DRR TEAM

DR BC VIraktamath(Overall supervision) Our Sincere thanks to ICAR, (N.Delhi), CRIDA for financial support Thanks to all for the Kind attention